Electrophysiology of Auditory-Visual Speech Integration

A Forward Model of Auditory-Visual Speech

Virginie van Wassenhove
Ken W. Grant
David Poeppel

AVSP, St Jorioz 2003
Multisensory Perception

‘Physical world’ = continuous spectrum of electromagnetic energy

‘Inner world’ = discrete perceptual representations, sensory-specific or amodal?
Multisensory Integration

1. Feed-forward Models 1, 2, 3
2. Feed-back Models 4

Space & Time - Universal sensory invariants?

What information in the physical signals drive the integration across sensory systems? Physical redundancy?

→ Neural convergence & ‘spatio-temporal coincidence principle’
Co-occurrence of the stimuli in space (location) and time drive the integrative properties of multisensory neurons, or ‘supra-additivity’.

→ AV speech
Correlation of lip movements and acoustic amplitude envelope has been proposed to cue the integration process (low frequency range ~3-5 Hz).

▪ Is 4Hz scale information a sufficient constraint for AV speech integration?
▪ Are multisensory sites of integration the seat of perceptual emergence?
▪ Integration: When? How? Where?

Timing properties of AV speech

- Movements of the articulators naturally precede the auditory speech output.

 Auditory and visual onsets are not ‘simultaneous’.

- AV speech integration tolerates signals desynchronization of ~250ms and visual leads are less detrimental to integration than auditory leads\(^1\)\(^2\).

Phonetic categorization is processed on a shorter time scale than visemic categorization, i.e. need for a finer grain scale interaction.

- Neural integrative time windows of ~20 and ~200ms have been proposed to mediate featural and perceptual unit formation, respectively\(^3\).

- In particular, a fine-grained temporal resolution is necessary for phonetic processing (e.g. voice-onset time and place-of-articulation) while a coarser integrative time window may underlie syllabicity\(^4\).

Working Hypotheses

1. Multisensory supra-additivity was expected early on (~40-90ms) (with reference to non-speech data1,2)

2. Based upon previous fMRI findings3, we predicted an enhanced amplitude of the auditory event related potentials N1/P2 (~100-200ms post auditory onset)

3. Incongruent speech was predicted to yield a less enhanced response than congruent AV speech on the basis of spatio-temporal coincidence principle4 and violation of acoustic amplitude envelope5.

Question: Can we find cortical activity that systematically correlate with perceptual changes?

Experimental Design

Natural Stimuli
- Audio alone (A)
- Video alone (V)
- Congruent (AV)
- Incongruent 1 McGurk fusion (A_pV_k)

Task 3AFC [ka] [pa] [ta]

Instructions
- **Unimodal** “Identify (A) what you hear or (V) what the person is articulating”
- **Bimodal** “Identify what you hear while looking at the face” (conversational setting)
- **Visual attention** “Identify what you see while ignoring the sound”

No strategy was stated to the participant (i.e. participants were never asked to lip-read nor advised to)

- **Experiment 1 Block design**
 - Unimodal (A, V) intermixed – bimodal (AV) separate blocks (n=16)

- **Experiment 2 Pseudo-random design**
 - Unimodal and bimodal intermixed (A, V, AV) (n=10)

- **Experiment 3 Visual attention** in incongruent speech
 - (n=10, also took part in Experiment 1)

Results – Experiment 1 (n=16)
Visual speech modulates auditory ERPs early on

Temporal Facilitation – Short time scale (~20-50ms)

The rate of correct identification in visual alone condition predicts the degree of temporal facilitation of the N1/P2 complex.

Temporal facilitation (ms) of the N1 and P2 peak latencies as a function of correct identification in visual alone condition.

Latency of N1 (and P2) in AV conditions was subtracted from the latency of N1 (and P2) in their respective A condition. A positive value indicates that AV is faster than A.
Visual speech modulates auditory ERPs

Amplitude reduction - Long time scale (~250ms)
Contrary to the temporal facilitation of the N1/P2, the amplitude reduction did not depend upon visual ambiguity and was similar for all tokens. The amplitude decrease was observed over the entire N1/P2 complex (up to ~350ms) but not before (i.e. we did not observe a P50 amplitude decrease for these stimuli).

Amplitude decrease (μV) of the N1 and P2 peak amplitude as a function of correct identification in visual alone condition.

Amplitude of N1 (and P2) in AV conditions was subtracted from the latency of N1 (and P2) in their respective A condition. A positive value indicates that AV is smaller than A.
Why no supra-additivity?

Auditory specific event-related potentials not *a priori* originating from multisensory neurons.

Recent data suggest a distributed network\(^1,2\):
- **intersensory suppression** of unisensory cortical sites
- **enhancement in multisensory** subcortical and cortical sites

AV speech (vowels) has been shown to lead to early suppressed responses at 50ms post-auditory onset\(^3\) (but we did not replicate this observation at P1).

Implications for models of AV speech perception (and multisensory perception)

Early dependency of sensory-specific neural processing.

Intermediary *abstract representation* (i.e. amodal) needs to be postulated to account for electrophysiological data.

Forward model AV speech perception

- **SALIENT** e.g. bilabial
 - specified representation
 - strong predictor of audio
 - no redundancy
 - high decorrelation
 - temporal facilitation
 - COMBINATION e.g. AkVP

- **AMBIGUOUS** e.g. velar
 - under specified representation
 - weak predictor of audio
 - no redundancy
 - no decorrelation
 - low temporal facilitation
 - FUSION e.g. ApVk

- **abstract representation**
 - PREDICTION
 - EVALUATION
 - RESIDUAL ERROR

- **auditory speech input**

- **visual speech input**
As predicted, no significant amplitude variations was found across AV stimuli, regardless of

(i) attended modality,
(ii) AV incongruency and,
(iii) stimulus identity (as observed in experiments 1 and 2)
Intersensory bias and incongruent Speech (2)

Predictions:
(1) Similar amplitude reduction in congruent and incongruent conditions.
(2) Little-to-no temporal facilitation of audio /pa/ dubbed onto visual /ka/.

In experiment 1 and 2, little-to-no temporal facilitation was observed in fusion (red) as compared to congruent AV /pa/ (blue).

In experiment 3, the temporal facilitation was recovered in fusion (gray) despite the AV incongruency and the low predictive value of visual /ka/.

These results suggest that the weight of the predictor at the evaluation stage depends upon attended modality, in agreement with the notion that in conflicting multisensory situations, the non-attended modality (here auditory) is increasingly biased with directing attention to the other modality (here visual).

Conclusions

1. The more salient the visual speech is, the faster the auditory speech is processed (~10-30ms of temporal facilitation).

2. AV speech engages in a bimodal mode of processing, marked by a deactivation of the auditory cortex spreading over ~250ms, independently of (i) the identity of the speech stimuli, (ii) their congruency and (iii) attended modality.

 (Further experiments are needed to specify the origin of this deactivation (e.g. threshold variation, reduced number of neurons,…)

3. A forward model of AV speech is proposed, that integrates the idea of analysis-by-synthesis and neural predictive coding as primary computational strategies.

4. No sensory-specific supra-additivity was found.

Thank You! 😊